
Neuromorphic Computing and
Engineering

     

PAPER • OPEN ACCESS

An organic artificial soma for spatio-temporal
pattern recognition via dendritic integration
To cite this article: Michele Di Lauro et al 2024 Neuromorph. Comput. Eng. 4 024001

 

View the article online for updates and enhancements.

You may also like
Management of eutrophication using
combined the “flock & sink” mitigation
technique and submerged plants
restoration: a mesocosm study
Liu Yutian, Liu Jinfu, Yuwei Chen et al.

-

Using Clustering to Understand Intra-city
Warming in Heatwaves: Insights into Paris,
Montreal, and Zurich
Yongling Zhao, Dominik Strebel,
Dominique Derome et al.

-

Tomographic reconstructions of the fast-
ion phase space using imaging neutral
particle analyser measurements
Jose Rueda-Rueda, Manuel Garcia-
Munoz, Eleonora Viezzer et al.

-

This content was downloaded from IP address 192.167.210.176 on 14/05/2024 at 09:36

https://doi.org/10.1088/2634-4386/ad3a96
/article/10.1088/2515-7620/ad45c0
/article/10.1088/2515-7620/ad45c0
/article/10.1088/2515-7620/ad45c0
/article/10.1088/2515-7620/ad45c0
/article/10.1088/1748-9326/ad456f
/article/10.1088/1748-9326/ad456f
/article/10.1088/1748-9326/ad456f
/article/10.1088/1361-6587/ad4486
/article/10.1088/1361-6587/ad4486
/article/10.1088/1361-6587/ad4486


Neuromorph. Comput. Eng. 4 (2024) 024001 https://doi.org/10.1088/2634-4386/ad3a96

OPEN ACCESS

RECEIVED

31 December 2023

REVISED

13 March 2024

ACCEPTED FOR PUBLICATION

4 April 2024

PUBLISHED

12 April 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

An organic artificial soma for spatio-temporal pattern recognition
via dendritic integration
Michele Di Lauro1,∗, Federico Rondelli1,2, Anna De Salvo1, Alessandro Corsini1,2, Matteo Genitoni1,2,
Pierpaolo Greco1,2, Mauro Murgia1,3, Luciano Fadiga1,2 and Fabio Biscarini1,4

1 Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia (IIT-CTNSC),
via Fossato di Mortara 17/19, Ferrara 44121, Italy

2 Sezione di Fisiologia Dipartimento di Neuroscienze e Riabilitazione, Universit̀a di Ferrara, via Fossato di Mortara 17/19, Ferrara
44121, Italy

3 Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), National Research Council, via Gobetti 101, Bologna 40129, Italy
4 Dipartimento di Scienze della Vita, Universit̀a di Modena e Reggio Emilia, Via Campi 103, Modena 41125, Italy
∗ Author to whom any correspondence should be addressed.

E-mail: michele.dilauro@iit.it

Keywords: organic neuromorphic electronics, pattern recognition, dendritic integration

Supplementary material for this article is available online

Abstract
A novel organic neuromorphic device performing pattern classification is presented and
demonstrated. It features an artificial soma capable of dendritic integration from three pre-synaptic
neurons. The time-response of the interface between electrolytic solutions and organic mixed
ionic-electronic conductors is proposed as the sole computational feature for pattern recognition,
and it is easily tuned in the organic dendritic integrator by simply controlling electrolyte ionic
strength. The classifier is benchmarked in speech-recognition experiments, with a sample of 14
words, encoded either from audio tracks or from kinematic data, showing excellent discrimination
performances in a planar, miniaturizable, fully passive device, designed to be promptly integrated
in more complex architectures where on-board pattern classification is required.

1. Introduction

The capability of recognizing and reacting to stimulation patterns coming from multiple sources, integrating
them in a coordinated, low-dimensionality response, is one of the main features of neural computing, which
enables extremely low-power parallel computation, concurring in making the human brain a more robust,
plastic and fault-tolerant computing system with respect to digital architectures [1]. In each neuron, the
soma constantly integrates inputs coming from thousands of dendritic synapses, which are located at the
connection knots between axons of pre-synaptic neurons and its (post-synaptic) dendrites. This process is
known as ‘dendritic integration’ [2] and it is critical in neural signal transmission and computing. Indeed, it
has been demonstrated that, since action potentials are initiated near the soma in the axon initial segment [3,
4], synaptic inputs can influence action potentials of post-synaptic neurons by effectively modulating the
membrane potential at this location [5]. In addition, this modulation is influenced by geometrical and
electrochemical properties of dendrites, thus enabling a wide variety of non-linear operations in neurons [6].

In recent years, there has been a growing endeavor in trying to implement brain computing features on a
hardware level [7]. This ambitious goal is pursued either by building massive networks of artificial neurons
and synapses achieved via conventional silicon-based electronics, aiming at building neuromorphic
supercomputers (e.g. the recently announced Deep South, aiming at>1014 synaptic operations per second
[8]), or by emulating synaptic functions in neuromorphic device units, exploiting the inherent signal
response properties of unconventional materials, such as organic mixed ionic electronic
conductors—OMIECs [9]. The latter resulted in the newly developed field of Organic Neuromorphic
Electronics, which succeeded in the demonstration of a wide variety of neural processing functions,
concerning plasticity in response to input signals [10, 11] and spike generation [12]. Importantly, such
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architectures can be promptly interfaced to the biological environment, and their neuromorphic behavior is
directly influenced by chemo-physical features of the environment itself, making them ideal candidates for
biointerfacing and sensing applications [13–17]. Lately, both reversible [18–20] and irreversible [21] means
for achieving tunability of the device response have been explored, especially in three-terminal architectures
[22], and this enabled the demonstration of higher functions, such as pattern recognition [23] and reservoir
computing for image recognition [24] in OMIEC-based neuromorphic devices.

The proneness of OMIECs towards such applications directly stems from their capability of establishing
large electroactive surface area interfaces with electrolytic solutions [25] and from their strong interaction
with ionic species in solution, which ultimately results in a kinetic unbalance between the processes of ion
adsorption and desorption upon an external driving force [26] (i.e. typically, a pulsed bias in the electrolyte).
The consequent, relatively ‘slow’, relaxation time of OMIEC/electrolyte interfaces can serve as a design tool
for the fabrication of neuromorphic units exhibiting an inherent representation of time [27] as well as
real-time filtering capabilities [28]. Such features make them ideal building blocks for in situ spatio-temporal
pattern recognition, which is one of the main desiderata when imagining compact, low-power circuitry for
on board data treatment and classification.

In this work, a model OMIEC-based neuromorphic architecture for spatio-temporal pattern
classification is proposed, namely a dendritic integrator made by artificial post-synaptic soma with three
dendrites interfaced to three pre-synaptic neurons, and its classification capabilities are assessed both on
model patterns and in the context of speech recognition.

2. Results and discussion

Figure 1 shows the proposed approach and the device fabrication. In particular, figures 1(a) and (b) provide
a direct comparison between the biological concept we are proposing to mimick and the corresponding
artificial dendritic integrator. The three presynaptic neurons in figure 1(a) are three input terminals carrying
the voltage time series V in,1, V in,2 and V in,3, respectively, in figure 1(b). The three synapses are identified by
their three weight coefficients k1, k2 and k3. The post synaptic neurons receives the three inputs and outputs a
current, Iout, which corresponds to a weighted combination of the input signals, thus reducing the
dimensionality of the input by a factor 3 (i.e. three bi-dimensional V vs t inputs are reduced to a one
bi-dimensional I vs t output). Figure 1(c) shows the steps of the device fabrication, which are detailed in the
experimental section. At first, three linear electrodes and a three-branched one are patterned via direct laser
ablation on a metalized poly-imide layer, then a second layer of polyimide allows spatial confinement of the
three synaptic cleft, each constituted by two terminals, namely one axon terminal from a pre-synaptic neuron
and one dendrite from the post-synaptic soma. Synaptic terminals are then coated with PEDOT/PSS via
potentiostatic electrodeposition, and the device is completed with three working electrolytes, one for each
synaptic cleft. Figures 1(d) and (e) show the schematic and the actual device characterization layout.

Due to the chosen device layout, the administration of a voltage pulse elicits, in each synaptic cleft, a
currents which can be collected at the presynaptic terminal, IPRE (t), and has the usual form:

IPRE (t) =
V(t)

RE
+C

∂V(t)

∂t
(1)

where RE and C are resistance of the electrolyte and equivalent series capacitance of both
electrode/electrolyte interfaces, respectively. This current is mirrored on the other terminal of each synapse,
resulting in an excitatory post synaptic current, EPSC, in the soma. The overall somatic current Iout will
simply be the linear combination of the EPSCs, as follows:

IOUT (t) =−
(
Vin,1 (t)

RE,1
+
Vin,2 (t)

RE,3
+
Vin,3 (t)

RE,3
+C1

∂Vin,1 (t)

∂t
+C2

∂Vin,2 (t)

∂t
+C3

∂Vin,3 (t)

∂t

)
(2)

where indexes 1, 2, 3 indicate the synaptic clefts.
Since both RE and C, in the absence of any other difference concerning electrode area or thickness of the

PEDOT/PSS layers, are solely influenced by the molar concentration of the electrolyte, it is possible to change
the weight of each synaptic connection by changing the molar concentration in the corresponding electrolyte
compartment. For this reason, in the present work, weight coefficients k1, k2 and k3 are expressed in mol l−1.

At first, we assessed the device classification performances benchmarking them against the
discrimination of two model patterns, the results are summarized in figure 2. Figure 2(a) shows the selected
3× 3 binary patterns, termed ‘A’ and ‘B’, and the corresponding input voltammograms. Each of the three
input voltages codifies for a row of the pattern, each column is encoded in a∆t time interval, V in = 1 V is
assigned to a white pixel, while V in = 0 V is assigned to a black one. A ‘black pixel’, namely a∆t time interval
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Figure 1. (a) Conceptual representation of the dendritic integration mimicked in this work. Inputs from three synapses are
integrated by the soma and yield a somatic output; (b) schematic of the proposed dendritic integrator, where three pre-synaptic
input voltages—V in—are weighted each for a weighting factor—k—and integrated in the somatic output current—Iout; (c)
device fabrication. (i), (ii) Direct laser ablation is used on Cr/Au metalized polyimide to define three input (presynaptic)
electrodes and one common branched output terminal (the soma), contacts and leads; (iii) an additional adhesive poly-imide
layer featuring seven circular holes is aligned to the pattern, exposing only the four contact pads and the terminal parts of
electrodes; (iv) PEDOT/PSS is electrodeposited on electrode tips; (v) three distinct electrolyte compartments can be used as
synaptic clefts with adjustable weights; (d) schematic representation of the connection layout, featuring three independent pulsed
voltage sources and one amperometer; (e) photography of the actual characterization layout.

with V in,1 = V in,2 = V in,3 = 0 V is added before and after every row, to ensure equal contour conditions. In
this experiment, k1 = k2 = k3 = 1 M.

These patterns have been chosen since, although spatially different, they are temporally equal in terms of
transitions between ON and OFF pixels. Such transitions are of critical importance since the cause spikes and
current decays in Iout, as from equation (2). In particular, in both cases there is one voltage turning on at
t =∆t, one voltage turning ON and one turning OFF at t = 2∆t and at t = 3∆t, and one turning OFF at
t = 4∆t. Comparison between figures 2(b) and (c), showing the discrimination between Pattern A and
Pattern B built on a time basis of 20 ms and 3 ms, respectively, unveils the relevance of∆t in determining the
classification efficiency or the artificial soma. The characteristic RC relaxation time of our synapses with
k= 1 M in response to a single pulse is τRC = 3.84± 0.62 ms (see figure S1 in the supporting information)
When∆t = 20 ms (i.e. longer than τRC, figure 2(b)), all the presynaptic currents return to steady state before
any further perturbation of the system equilibrium occurs. The resulting somatic currents, top right panel in
figure 2(b), are hence poorly distinguishable. As a consequence, also the absolute exchanged somatic charges,
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Figure 2. (a) Model input binary 3× 3 patterns and corresponding voltammograms; (b) device response to patterns A and B,
built on a time basis∆t = 20 ms. Presynaptic currents for pattern A (top left) and pattern B (bottom left), overlay of somatic
current traces (top right) and corresponding calculated charge (bottom right); (c) device response to patterns A and B, built on a
time basis∆t = 3 ms. Presynaptic currents for pattern A (top left) and pattern B (bottom left), overlay of somatic current traces
(top right) and corresponding calculated charge (bottom right). Here k1 = k2 = k3 = 1 M.

|Q| (bottom right panel, figure 2(b)), calculated as the integrals of current traces in time, show comparable
profiles between Pattern A and Pattern B.

It is worth noticing that, due to minimum differences between the individual synapses, the proposed
architecture still manages to discriminate between the patterns, meaning—as expected—that spatial
information can be encoded in the difference of synaptic weights, be them intentionally variated or
adventitiously different. This effect is magnified when∆t is lower than τRC (figure 2(c)), since incomplete
relaxation of each synapse (the phenomenon at the origin of STP, STDP and paired-pulse plasticity in
organic neuromorphic devices) brings in additional charge contributions.

We choose to regard the absolute value of the integral of current in time, |Q|, and in particular its value at
the end of the stimulation protocol, |Q|end, as the final quantitative output of the proposed classifier because,
on the one hand, it magnifies even transient differences between currents and, on the other, in view of future
technological development it could be directly measured with a simple integrator circuit acting as a
pseudo-additional classification layer, yielding a further dimensionality reduction (as commonly done in
artificial neural networks) by condensating the information of a pattern of three bidimensional time series in
a single charge value. Upon these premises, a performance coefficient of our binary classifier, χ, can be
expressed as the difference between the total somatic charge exchanged upon Pattern A and Pattern B
stimulations, normalized over the sum of the two charges. In this example, when∆t goes from 20 ms to
3 ms, χ increases from 0.047 (data from figure 2(b)) to 0.081 (data from figure 2(c)). As said, another way to
improve classification performance is to diversify the weights of the synaptic connections. Even keeping
∆t = 20 ms, if k1 = 0.8 M, k2 = 1 M and k3 = 0.6 M, χ is increased to a value of 0.059.

In absolute terms, ||Q|end,A − |Q|end,B|= 1.67 µC when∆t = 20 ms and ||Q|end,A − |Q|end,B|= 1.36 µC
when∆t = 3 ms, and both charge differences largely exceed the sensitivity of state of the art charge
integrators (≈pC).

Aiming at the translation of the proposed architecture and of its classification capability to more complex
and significant scenarios, we devised a proof-of-concept application of the optimized classifier architecture
(∆t = 3 ms, k1 = 0.8 M, k2 = 1 M and k3 = 0.6 M) to the problem of speech recognition. We used a set of 14
audio recordings, each containing an individual Italian word. In particular, seven of them (i.e.
AMORE—CASA—CIAO—FAME—FELICE—GRAZIE—TRISTE) were collected in the framework of the
present study, while the remaining seven (i.e. GIORNATA—INFANZIA—INVENTATO—MASCHERA—
ONDOSO—PRIVILEGIO—TIMONE) were extracted from the Multi-SPeaKing-style Articulatory corpus
(MSPKA) [29], to rule out influences from the sampling conditions and to compare classification efficiency
starting either from audio traces or from kinematic data.
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Figure 3. (a) audio track of the Italian word ‘AMORE’; (b) high resolution spectrogram; (c) condensed representation of the
spectrogram, with 3 time windows and 64 frequency bands; (d) computed MFCCs; (e) binarized MFCCs; (f) 90◦

counterclockwise rotation of the binarized MFCCs; (g) voltage encoding of the pattern in (f); (h) corresponding pre-synaptic
currents; (i) the resulting somatic current Iout. Here k1 = 0.8 M, k2 = 1 M and k3 = 0.6 M.

From each audio, we compute the mel-frequency cepstral coefficients (MFCCs) [30] to derive three
dimensional features to serve as input signals. MFCC extraction—a standard pre-processing step in speech
recognition tasks—facilitates a compact parameterization of speech signals capable of capturing phonetically
relevant aspects [31]. The algorithm to generate input sequences for the artificial soma starting from audio
tracks is schematically shown in figure 3, using the word ‘AMORE’ as an example. As commonly known, it is
possible to apply a moving time window to an audio track (figure 3(a)) and to compute the discrete Fourier
transform for each segment, resulting in a spectrogram (figure 3(b)). Since the proposed artificial soma
features three input synapses, it is necessary to reduce to 3 bins one of the dimensions of the spectrograms.
Precisely, we discretized the spectrogram in three time windows (figure 3(c)), as detailed in the experimental
section, and applied the discrete cosine transform to the Mel spectrogram to extract 13 cepstral coefficients
(MFCCs, figure 3(d)):

cn =
K∑

k=1

Sk · cos
[
n

(
k− 1

2

)
π

K

]
,n= 0, . . . ,12

where Sk is the power of the kth frequency band. We, then, excluded the first cepstral coefficient c0,
accounting for the overall energy of the signal, and binarized the result using a median-split approach:

cn =

{
−1, x⩽Med(C)
+1, otherwise

, C= {c1, . . . ,c12} .

Binarization produces a black and white pattern representing the audio file (figure 3(e)). All the patterns
are reported in figure S2, in the supporting information.

A 90◦ counterclockwise rotation of the pattern (figure 3(f)) and its conversion in a square voltage input
on a time basis∆t = 3 ms, with V in = 0.5 V for white rectangles and V in = 0 V for black ones, yields the
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Figure 4. (a) Somatic currents Iout upon stimulations with MFCCs derived inputs for the chosen words dataset (b) cross
correlation table, showing excellent classification capability; (c) calculated somatic charge |Q| vs t profiles; (d) bar plot reporting
|Q|end values for all the selected words, a charge resolution of 500 nC (dashed horizontal lines) is enough to perform successful
classification. Here k1 = 0.8 M, k2 = 1 M and k3 = 0.6 M.

input sequences for the artificial soma (figure 3(g)). As for the model patterns of figure 2, for each
stimulation pattern it is possible to collect the individual pre-synaptic currents I1, I2 and I3 (figure 3(h)) and
the resulting somatic current, Iout (figure 3(i)).

The performances of the classifier are summarized in figure 4. Figure 4(a) shows the profiles of Iout in
response to the 14 V input patterns derived from audio recordings, as described in figure 3. Conversely to
what happened in the cases of the model patterns in figure 2, here the current outputs are clearly
distinguishable also from a qualitative examination of the tracks. To provide a quantitative estimate of the
pattern recognition efficiency, it is possible to refer to the cross-correlation table in figure 4(b), which reports
Pearson’s correlation coefficients computed between current traces.

For this dataset, the average cross correlation coefficient is as low as 0.39± 0.23, with a maximum value
of 0.84 (between MASCHERA and INFANZIA), hinting at easy discrimination amongst all the selected
words. As in the case of model patterns, it is possible to further reduce the dimensionality of the problem by
integrating Iout in time and acquiring charge vs time profiles, reported in figure 4(c). As predictable by the
current traces in figure 4(a), every word yields an unambiguously attributable charge profile and an
individual |Q|end value (figure 4(d)).

To quantitatively express the classification efficiency of a given classifier architecture (i.e. a given time
basis for patter encoding and a given kernel of k values) it is not useful to refer to the parameter χ, which was
devised for one-to-one comparisons, but it is possible to refer to the average difference between two
subsequent |Q|end values, S.

Data in figure 4 yield an S as high as 1.38 µC while, in a control experiment with k1 = k2 = k3 = 1 M
(figure S3 in the supporting information), S= 0.43 µC. This means that, by properly tuning the set of
synaptic weights, it is possible to increase the classification performance by 320%.
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Figure 5. (a) Most relevant features of the electromagnetic articulography (EMA) recordings, for the Italian word ‘GIORNATA’;
(b) binned EMA data; (c) voltage encoding of the pattern in (b), on a time basis∆t = 3 ms; (d) somatic currents Iout upon
stimulations with EMA-derived inputs for the chosen words dataset; (f) somatic charge |Q| vs t profiles; (g) bar plot reporting
|Q|end values for all the selected words, a charge resolution of 1 µC (dashed horizontal lines) is enough to perform successful
classification; (h), (i) cross correlation tables showing comparison between classification performance on MFCCs-derived and
EMA-derived input sequences, showing better performances for articulography data with respect to audio ones. Here k1 = 0.8 M,
k2 = 1 M and k3 = 0.6 M.

As a final test for our classifier, as introduced above, we chose a less pre-treated but more clinically
relevant input dataset, still in the field of speech recognition: namely, kinematic data of the speaker’s
articulatory trait, collected by electromagnetic articulography (EMA), on the subset of words extracted by
the MSPKA. Results are shown in figure 5. MSPKA dataset provides, along with the audio, the corresponding
speaker’s articulatory kinematics data (specifically lips, jaws, and tongue movements).

From the high-dimensional EMA data (comprising 7 sensors× 3 dimensions= 21 time-series), only the
three most relevant recordings [32] were chosen: namely tongue movement towards and away-from the lips
(TB.x) and the palate (TB.z), and finally opening and closing of the mouth (lower lip moving towards and
away from the upper lip: LL.z) (figure 5(a)). Figure S4 in the supporting information shows the entire
dataset. To derive voltage input sequences we binned the time-series with a moving average approach on
windows of 10 ms and cut all the selected words at the duration of the shortest one (figure 5(b)). The time
basis is then converted to 3 ms in accordance with previous experiments, resulting in the three input
sequences (figure 5(c)). Iout is collected as already described. Figure 5(e) shows the profiles of Iout in response
to the seven voltage input patterns derived from EMA recordings. Figures 5(f) and (e) show more efficient
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classification with respect to the corresponding data in figures 4(c) and (d). In particular, restricting the
analysis to the seven-word subset, S is increased from 2.06 µC to 3.43 µC, with a 66% increase and here a
charge resolution of 1 µC is sufficient for unambiguous classification. This is further evidenced by the
comparison between cross correlation tables in figure 5(h) and in figure 5(i), built on Iout profiles resulting
from MFCCs-derived and EMA-derived input sequences, respectively, which show much higher correlation
(i.e. poorer distinction) between Iout profiles resulting from audio classification with respect to those coming
from classification of kinematic data, well in accordance with previous literature on speech recognition [32].

3. Experimental

3.1. Device fabrication
The microfabricated electrodes are obtained starting from a thin flexible foil of DuPont Kapton EN30
metalized with gold (Creavac, Dresden, DE). The polymeric foil exhibits thickness values ranging between 7
and 10 µmwhereas the metallization layer, deposited in vacuum, includes a thin film of chromium (3 nm) to
promote adhesion and a 70 nm thick gold film. Patterning of the electrodes was performed by means of laser
scan ablation according to a drawing in CAD file containing the geometry. The in-house assembled infrared
laser system (Istituto Italiano di Tecnologia) enables selection of the optimal ablation power (≈2 mW) not to
melt or deform the polymeric film. Although the process is intrinsically serial, the speed of the galvanometric
scanner is high, allowing a total processing time lower than 4 min. After ablation, devices are cleaned by
sonication in ethanol for 5 min.

Terminal parts of the electrodes are coated by potentiostatic electrodeposition of PEDOT/PSS (5 s 0.2 V,
then 0.8 V in charge limit control, up to 300 mC cm−2 charge density), starting from an aqueous electrolyte
containing 10 mm EDOT and 5 mg ml−1 NaPSS, reaching a final thickness of 1.22± 0.05 µm. PEDOT/PSS
rms roughness was found to be 12± 1 nm. This protocol ensures high reproducibility, with impedance
variability at the operational frequency lower than 2.5%. The surface topography of the electrodeposited
PEDOT:PSS formulation on ablated gold-polyimide substrates was investigated by atomic force microscopy
(AFM), using Park XE7 AFM System (Park System, Suwon, Lorea) operating in Tapping mode, in air and
room temperature. Premounted silicon cantilevers (OMCL-AC160TS, Olympus Micro Cantilevers, Tokyo,
Japan) with an Al backside reflective coating, a tip curvature radius ca. 7 nm, an elastic constant ca.
26 Nm−1, and a resonance frequency ca. 300 Hz were used. The root-mean-square roughness (rms) and the
thickness of the electrodeposited PEDOT:PSS film were analyzed by Park System XEI software (Park System,
Suwon, Korea). In particular, the rms were extracted and averaged from 5.0 µm× 5.0 µm topography images
(figure S6) collected in three different regions. Before extracting the rms values, the topography images were
flattened using a fourth order regression in X direction.

3.2. Electrical characterization
Electrical characterization is performed using three Keysight B2912A Source/Measure Units, connected in
parallel on a common ground and controlled by an ad hoc designed software. Channel 1 of each SMU is used
to source input voltages V in,1, V in,2 and V in,3 and to collect IPRE in each individual synapse, while Channel 2
of one the SMUs is used to collect the somatic current, Iout. Measurements are performed using phosphate
buffered saline solution at pH= 7.4 (P3619-1GA, Merck) as a transmission medium, adjusting the
concentration via dilution with MilliQ water.

3.3. Audio spectrogram computation
A window (with no overlap) of the length of one-third of the total audio duration and an N-points fast
Fourier transform with N equal to the length of the window are employed. The Mel spectrogram is then
computed by applying a filterbank of 64 triangular filters linearly spaced in the Bark/Mel scale. Slaney’s
formula is used in the conversion from Hz to Mel [33], as implemented in the librosa package (https://
zenodo.org/badge/latestdoi/6309729), mimicking the pre-processing of speech signals by the human inner
ear. The resulting spectrogram is finally converted to dB (log transformation multiplied by 20).

3.4. Analysis, graphing and presentation
Collected data are analyzed and graphed by means of MatlabR2022b and OriginPro2016, figure panels are
assembled in Adobe Photoshop CS6, 3D-device schematics are sketched in SketchUp Make 2017.

4. Conclusions

In this work we develop and demonstrate an organic neuromorphic spatiotemporal pattern classifier based
on the concept of dendritic integration between three two-terminal artificial synapses whose weight factors
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can be arbitrarily set by simply changing the working electrolyte. The device is planar and fabricated through
laser prototyping, making it prone to miniaturization and integration with planar, flexible and eventually
bio-compatible/degradable electrode arrays for physiological applications. Furthermore, it is virtually
passive, and performs classification without the necessity of any driving voltage, with the exception of the
input ones. The proposed architecture can efficiently discriminate between fourteen 13× 3 spatiotemporal
patterns derived from audio files (figures 3 and 4) and shows a first proof of principle classification of
quasi-continuous physiologically relevant time series (EMA data in figure 5), with even better performances
with respect to strongly pre-treated model patterns. The results herein presented, coupled with the high
integration possibilities offered by the technological platform of organic electronic techniques—which allows
the envisioning of networks of multiple artificial somas—have the potential to foster novel online
classification strategies of signaling patterns based on supervised learning strategies with organic
neuromorphic electronics.
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